Journal of Organometallic Chemistry, 69 (1974) 179–183 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

MIXED BORYL SILYL AMINES

G. SRIVASTAVA Chemical Laboratories, University of Rajasthan, Jaipur-4 (India) (Received August 31st, 1973)

Summary

4

The reactions of bis(trimethylsilyl)amine and tris(trimethylsilyl)amine with 2-chloro-1,3,2-dioxaborolane and 2-chloro-4,4,6-trimethyl-1,3,2,-dioxaborolane have been studied.

Introduction

The silicon-nitrogen bond is readily cleaved by chloroboranes with the formation of a boron-nitrogen bond [1]. Thus, bis(trimethylsilyl)amine has been brought into reaction with BCl_3 [2,3], R_2BCl [4], $PhB(NMe_2)Cl$ [5] and 2-chloro-1,3,2-benzodioxaborole [6]. However, similar cleavage reactions of tris(trimethylsilyl)amine have been little studied [7]. We describe below the reactions of bis(trimethylsilyl)amine and tris(trimethylsilyl)amine with 2-chloro-1,3,2-dioxaborolane and 2-chloro-4,4,6-trimethyl-1,3,2-dioxaborinane.

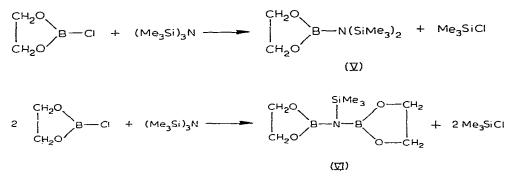
Results and discussion

2-(Trimethylsilylamino)-1,3,2-dioxaborolane (I) and 2-(trimethylsilylamino)-4,4,6-trimethyl-1,3,2-dioxaborinane (II) were obtained in quantitative yield by the exothermic reactions between bis(trimethylsilyl)amine and the corresponding 2-chloro derivatives. In contrast to 2-amino-1,3,2,-dioxaborolanes, which are generally polymeric solids [8], these compounds (I) and (II) are colourless volatile liquids.

$$R = CI + (Me_3Si)_2NH - R = R = NHSiMe_3 + Me_3SiCI$$

المراجع المراجع المراجع والمراجع والمراجع والمتعين فرعون المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع

(I),
$$R = -CH_2 - CH_2 - CH_2$$


Reactions of bis(trimethylsilyl)amine with 2 moles of chloroboranes were also carried out to give the diborylamines, a comparatively less studied class of compounds [9].

$$2 R O B - CI + (Me_3Si)_2NH R O B - NH - B O R + 2 Me_3SiCI$$

$$(III) R = -CH_2 - CH_2 - (III) R = -CMe_2 - CH_2 - CHMe -$$

In case of 2-chloro-1,3,2-dioxaborolane, an impure sample of (III) (containing 4% chlorine) was obtained as a white polymeric solid, insoluble in organic solvents. A similar derivative, bis(1,3,2-dioxaborinan-2-yl)amine, $(O-(CH_2)_3-O-B)_2NH$, has been described previously as an intractable compound [10]. The bisborylamine (IV), however, is a volatile liquid [11].

Tris(trimethylsilyl)amine also reacts exothermally with 2-chloro-1,3,2dioxaborolane and one trimethylsilyl group is readily cleaved at room temperature with the formation of (1,3,2-dioxaborolan-2-yl)bis(trimethylsilyl)amine (V). For the cleavage of a second trimethylsilyl group the process of heating and removing the liberated trimethylchlorosilane has to be repeated. The mixed derivative (VI) is distilled in a comparatively low yield leaving a polymeric residue.

An unsuccessful attempt has been made to prepare the triborylamine, $(OCH_2CH_2OB)_3N$, by using more forcing conditions. The amount of polymeric residue increased further and only a small amount of distillate, b.p. 65 - $70^{\circ}/0.2 - 0.25$ mm, was obtained which appears to be mainly 2-(2-chloroethoxy)-1,3,2-dioxaborolane, $O-CH_2-CH_2-O-B-OCH_2CH_2CH_2Cl$ on the basis of boron analysis and PMR spectrum. Signals for Me₃Si protons as well as the singlet at τ 5.85 (observed in 2-chloro-1,3,2-dioxaborolane) are missing. The spectrum shows a singlet at τ 6.12 and two doublets (J 6 Hz) centered at τ 5.95 and τ 6.4.

Reactions of 2-chloro-4,4,6-trimethyl-1,3,2-dioxaborinane with tris(trimethylsilyl)amine are comparatively slow and the reaction mixture has to be heated for longer periods. During this process the chloroborane, which is highly

• Provide the second se Second sec

T/	AB	LE	1
17	лв	ЪE	T

(I)	(11)	(IV)	(V)	(VI)	Assignment
3425sh	3430w	3440w		}	ν(N-H)
3360w	3370sh			}	P(14-11)
2965vs	2980vs	2980vs	2960vs	2960vs)	
2910s	2920s	2940s	2900s	2910s }	ν(CH)
		2920s		j	
1500-	1460-	1470-	1485vs	1485vs	ν(BN)
1470vsb	1360vsb	1455vsb			D(B-N)
1430-			1420s	1420-	E (CIT)
1400vsb		1365vs		: 1410vs	$\delta(CH_2)$
1385vs			1385vs	1390m	
-				1380m	
1362vs	1330s		1345vs	1400-)	ν(BΟ)
1350vs	1310s	1310s		1330vsb)	P(B-0)
	1280m	1280m			
	1265m				
1255vs	1250vs		1255vs	1250vs	
	1230w	1230w		١	δ[CH ₃ (Si)]
	1210s	1210s		j	(CH ₃) ₂ C
1195m			1195m	1220s	
				1200w	
1160s				1160vw	
				1110vw	
1065vs	1180s	1170vs	1080s	1070vs	ν(CO)
1025m	1100w	1105w	1040m	1030s	
	1070w	1070w		1	
	1010w			Ş	CC
		1025w		. (
950w				950w	
910vs	910sh	900w	910vs	910vs	
	890s)	
	880s				
845vs	860sh		850vs	840vs	ρ _{as} [CH3(Si)]
	840vs				
760m	760m		770m	770s	ρ _s [CH ₃ (Si)]
	750w				
700m	690w		690s	690s	
665s	665m		665s	665m	$v_{as}(SiC_3)$
635w	630w		630m	630m	v _s (SiC ₃)

sensitive to temperature, is decomposed to give several fractions on distillation. No attempt was made to separate and identify these.

The identity of the new compounds, (I) - (VI) was further confirmed by PMR (in CCl₄) and IR (neat liquid) spectral study (Table 1). The v(N-H) peaks appear to indicate that association in the neat form decreases in the order (I) > (II) > (IV). The region between 1500 - 1250 cm⁻¹ in all the compounds is very complex showing very strong broad absorptions and unequivocal assignments for B-O and B-N stretching modes are very difficult. In 2-amino-1,3,2-dioxaborolanes [8], the B-N stretching frequencies were tentatively assigned in the region 1530 - 1545 cm⁻¹ and the B-O stretching frequencies in the region 1302 - 1230 cm⁻¹, thus assuming a higher than normal B-N bond order and a lower than normal B-O bond order. In mixed boryl silyl amines, the presence of silicon on nitrogen may lower the B-N bond order to some extent thereby increasing the B-O bond order. Thus in these derivatives, we tentatively assign to B-N and B-O stretching vibrations the bands in the region 1450 - 1500 cm⁻¹ and 1300 - 1350 cm⁻¹, respectively.

ويترجب والرواب والراجين المتصاطير محير

Experimental

Bis(trimethylsilyl)amine was distilled before use. Tris(trimethylsilyl)amine [12], 2-chloro-1,3,2-dioxaborolane [13] and 2-chloro-4,4,6-trimethyl-1,3,2-dioxaborinane [11] were prepared by published methods. The last compound, colourless when freshly distilled (b.p. $65^{\circ}/0.5$ mm), turns brown quickly. It was completely changed in a week at room temperature into a higher boiling liquid (b.p. $90^{\circ}/0.5$ mm) and a polymeric residue. No attempt was made to identify the distillate.

Reactions between bis(trimethylsilyl)amine and 2-chloro-1,3,2-dioxaborolane

1. An exothermic reaction occurred between 2-chloro-1,3,2-dioxaborolane (4.90 g, 1 mole) and bis(trimethylsilyl)amine (7.40 g, 1 mole) in benzene (25 ml). After refluxing the clear solution for 1 h, trimethylchlorosilane and benzene were distilled off. The residue (7.35 g) was distilled under reduced pressure to give 2-(trimethylsilylamino)-1,3,2-dioxaborolane (5.8 g, 78%), b,p. 33° (0.2 mm) as a colourless liquid. PMR spectrum, τ (CCl₄): (CH₃)₃Si, 9.90; CH₂, 5.95. (Found: B, 6.8; N, 8.7. C₅H₁ 4 BNO₂Si calcd.: B, 6.8; N, 8.8%.)

2. An insoluble white solid was obtained with evolution of heat on mixing 2-chloro-1,3,2-dioxaborolane (5.60 g, 2 mole) and bis(trimethylsilyl)amine (4.2 g, 1 mole) in benzene (25 ml). Trimethylchlorosilane and benzene were removed and the solid was dried in vacuo. It was insoluble in organic solvents and did not form a mull with Nujol. (Found: B, 14.5; N, 8.5; Cl, 4.0. $C_4 H_9 B_2$ -NO₄ calcd.: B, 13.8; N, 8.9; Cl, 0%.

Reactions between tris(trimethylsilyl)amine and 2-chloro-1,3,2-dioxaborolane

1. Heat was evolved on adding 2-chloro-1,3,2-dioxaborolane (2.13 g, 1 mole) to tris(trimethylsilyl)amine (4.67 g, 1 mole). The liberated trimethylchlorosilane was removed under reduced pressure and the residue (4.6 g) on distillation afforded (1,3,2-dioxaborolan-2-yl)bis(trimethylsilyl)amine (3.8 g, 83%) as a colourless liquid, b.p. 65° (0.2 mm). PMR spectrum, τ (CCl₄): (CH₃)₃Si, 9.8; CH₂, 6.0 (Found: B, 4.6; N, 5.9. C₈H₂₂BNO₂Si₂ calcd.: B, 4.7; N, 6.1%.)

2. A mixture of 2-chloro-1,3,2-dioxaborolane (6.38 g, 2 mole) and tris(trimethylsilyl)amine (7.00 g, 1 mole) was kept at room temperature for 1 h. The liberated trimethylchlorosilane was removed in vacuo. The residue (10.2 g) was heated for 2 h at 130 - 140° and the liberated Me₃SiCl was again removed in vacuo. The process was repeated until no Me₃SiCl was formed. Finally, distillation under reduced pressure gave (trimethylsilyl)bis(1,3,2-dioxaborolan-2-yl)amine (4.5 g, 65%) as a colourless mobile liquid at 70° (0.05 mm). PMR spectrum, τ (CCl₄): (CH₃)₃Si, 9.8; CH₂, 5.9. (Found: B, 9.2; N, 5.8. C₇H_{1 7}B₂-NO₄Si calcd.: B, 9.4; N, 6.1%.)

3. Trimethylchlorosilane was removed repeatedly as in the previous experiment from a mixture of tris(trimethylsilyl)amine (7.4 g, 1 mole) and 2-chloro-1,3,2-dioxaborolane (16.0 g, 4.8 mole). Finally the residue (13.0 g) was distilled under reduced pressure. A colourless liquid (3.5 g) was obtained at $65 - 70^{\circ}$ (0.2 - 0.25 mm). (Found: B, 7.8. C₄H₈BClO₃ calcd.: B, 7.7%.) A colourless polymeric solid residue (9.1 g) remained undistilled.

.

Reactions between bis(trimethylsilyl)amine and 2-chloro-4,4,6-trimethyl-1,3,2dioxaborinane

1. A mixture of bis(trimethylsily)amine (3.2 g, 1 mole) and the chloroborinane (3.3 g, 1 mole) was stirred for 1 h and the liberated trimethylchlorosilane was removed in vacuo. Finally 2-(trimethylsilylamino)-4,4,6-trimethyl-1,3,2-dioxaborinane (3.9 g, 90%) was obtained at 60° (1 mm). PMR spectrum, τ (CCl₄); (CH₃)₃Si, 9.93 (singlet); (CH₃)₂, 8.8 (singlet); CH₂, 8.1 - 8.7 (multiplet); tertiary H, 5.9 (multiplet); CH₃, 8.85 (doublet). (Found: B, 4.9; N, 6.3. C₉H₂₂BNO₂Si calcd.: B, 5.0; N, 6.5%.)

2. Removal of trimethylchlorosilane from a mixture of bis(trimethylsilyl)amine (2.7 g, 1 mole) and the chloroborinane (5.5 g, 2 mole) and distillation of the residue gave 2-(trimethylsilylamino)-4,4,6-trimethyl-1,3,2-dioxaborolane (0.5 g), b.p. 60° (1.2 mm) (authentic IR spectrum), a middle fraction (0.52 g), b.p. 60° (1.2 mm) to 119° (1.6 mm), bis(4,4,6-trimethyl-1,3,2-dioxaborolan-2-yl)amine (2.26 g, 50%), b.p. 120 - 125° (1.6 mm). (Found: B, 7.9; N, 5.0. $C_{12}H_{25}B_2NO_4$ calcd.: B, 8.0; N, 5.2%.) and an undistilled residue (1.26 g).

Acknowledgements

The author is grateful to Prof. R.C. Mehrotra for his continued encouragement.

References

- 1 O.J. Scherer, Organometal. Chem. Rev., Sect. A, 3 (1968) 281.
- 2 M. Becke-Goehring and H. Krill, Chem. Ber., 94 (1961) 1059.
- 3 R.L. Wells and A.L. Collins, Inorg. Chem., 5 (1966) 1327; Inorg. Nucl. Chem. Lett., 2 (1966) 201.
- 4 H. Noth, Z. Naturforsch, B, 16 (1961) 618.
- 5 H. Jenne and K. Niedenzu, Inorg. Chem., 3 (1964) 68.
- 6 M.F. Lappert and G. Srivastava, Proc. Chem. Soc., London, (1964) 120.
- 7 C.R. Russand and A.G. MacDiarmid, Angew. Chem., 76 (1964) 68.
- 8 R.H. Cragg, J. Inorg. Nucl. Chem., 30 (1968) 395.
- 9 H. Noth, in R.J. Brotherton and H. Steinberg (Eds.), Progress in Boron Chemistry, Vol. 3, Pergamon Press, 1970, Chapter 4.
- 10 A. Finch, P.J. Gardner, J.C. Lockart and E.J. Pearn, J. Chem. Soc., (1962) 1428.
- 11 W.G. Woods and P.L. Strong, J. Amer. Chem. Soc., 88 (1966) 4667.
- 12 W.L. Lehn, J. Amer. Chem. Soc., 86 (1964) 305.

· · · · ·

13 J.A. Blau, W. Gerrard and M.F. Lappert, J. Chem. Soc., (1957) 4116.